US009082180B2

a2 United States Patent

Cabral

US 9,082,180 B2
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR IMPLEMENTING
A SPATTALLY VARYING UNSHARP MASK
NOISE REDUCTION FILTER

Applicant: NVIDIA Corporation, Santa Clara, CA

(US)

Inventor: Brian K. Cabral, San Jose, CA (US)

Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 139 days.

Appl. No.: 13/730,654

Filed: Dec. 28, 2012

Prior Publication Data

US 2014/0185952 Al Jul. 3, 2014

Int. CL.

GO6K 9/40 (2006.01)

GO6T 5/00 (2006.01)

U.S. CL

CPC GO6T 5/004 (2013.01); GO6T 2200/28

(2013.01); GO6T 2207/20012 (2013.01)
Field of Classification Search

CPC ... GO6T 5/002-5/004; HO4N 1/4092;
HO4N 1/58
USPC ..o 382/261, 263, 266; 348/610

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,363,209 A * 11/1994 Eschbachetal. 358/445
2004/0071360 Al* 42004 Maurer 382/254
2006/0023965 Al* 2/2006 Kimbelletal. 382/260
2008/0298708 Al* 12/2008 Ovsiannikov et al. .. 382/261
2011/0075939 Al* 3/2011 Chiouetal. ... 382/224
2011/0123111 Al* 5/2011 Sibiryakovetal. 382/167

FOREIGN PATENT DOCUMENTS

EP 917347 A2 * 5/1999

OTHER PUBLICATIONS

Chandra et al. (“Dynamically optimized synchronous communica-
tion for low power system on chip designs,” Proc. IEEE Int’1 Conf. on
Computer Design, 2003).*

* cited by examiner

Primary Examiner — Yubin Hung
(74) Attorney, Agent, or Firm — Zilka-Kotab, PC

(57) ABSTRACT

A system, method, and computer program product for apply-
ing a spatially varying unsharp mask noise reduction filter is
disclosed. The spatially varying unsharp mask noise reduc-
tion filter generates a low-pass filtered image by applying a
low-pass filter to a digital image, generates a high-pass fil-
tered image of the digital image, and generates an unsharp
masked image based on the low-pass filtered image and the
high-pass filtered image. The filter also blends the low-pass
filtered image with the unsharp masked image based on a
shaping function.

17 Claims, 5 Drawing Sheets

100

o) -

102

Generate a low-pass filtered image by applying a
low-pass filter to a digital image

image
104

Generate a high-pass filterad image of the digital

106

Generate an unsharp masked image based on
the low-pass fitterad image and the high-pass
filtered image

108

Blend the low-pass filtered image with the
unsharp masked image based on a shaping
function

U.S. Patent Jul. 14, 2015 Sheet 1 of 5 US 9,082,180 B2

100

s ~

Generale a low-pass filtered image by applying a
low-pass filter to a digital image
162

(Generate a high-pass filtered image of the digital
image
104

Generate an unsharp masked image based on
the low-pass fillered image and the high-pass
fillered image
166

Blend the low-pass filtered image with the
unsharp masked image based on a shaping
function
108

4
End

Fig. 1

U.S. Patent Jul. 14, 2015 Sheet 2 of 5 US 9,082,180 B2

Filter 200
204
Image Low-Pass Filter j L’
201 —
USM LERP
¥ High-Pass Filter
Sl N
" 205 \29?
Noise
v Reduced
Sharpensd
image
202
Fig. 24
LERP 240
204
207
205 afx)

Fig. 2B

U.S. Patent Jul. 14, 2015 Sheet 3 of 5 US 9,082,180 B2

PPU 300

Host Interface Unit
310

VO Unit
308 Grid Management Unit
315

A

Work Distribution Unit
320

Sysiem Bus 302

I
|
|
SM 350(X) :
|
|
|
|

Crossbar 360

L2 Cache 38

AN Memory Interface 38G(U3Y h

—_——— e e ———— ———

—_—— e, e e, e, e ——————

U.S. Patent Jul. 14, 2015 Sheet 4 of 5 US 9,082,180 B2
SM 350
instruction Cache 405
Scheduler Unit 410(K) }1|
I
[
I
Dispatch 415 Dispatch 415 | :
|
—)
e I 4
Register File 420
\4 v
L L L L
Core |1 DPU I SFU |1 Lsu 1]
450(L) :: 451(M) |]1| 452N :: 453(P) ::
c——&———-| ———&-———-| T——&———4| ———&———1|
Intsrconnect Network 480
Shared Memory/L1 Cache 470
Texturs Texture Texiure
Unit Unit s . Unit
480(0) 480(1} 400(0)

Fig. 4

U.S. Patent

Jul. 14, 2015 Sheet 5 of 5

CENTRAL
PROCESSOR
501

MAIN MEMORY
504

INPUT DEVICES
812

BUS
s02

SECONDARY
STORAGE
510

GRAPHICS
PROCESSOR
508

DISPLAY
508

US 9,082,180 B2

500

&

US 9,082,180 B2

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR IMPLEMENTING
A SPATTALLY VARYING UNSHARP MASK
NOISE REDUCTION FILTER

FIELD OF INVENTION

The present invention relates to image processing, and
more particularly to a spatially varying, sharpening, noise
reduction filter.

BACKGROUND

Unsharp masking is a well-known image processing tech-
nique used to enhance high-frequency components (i.e.,
edges) of an image while suppressing some low amplitude
noise. Typically, a low-pass filter is applied to the image to
create a blurred version of the image. The low-pass filtered
image is then compared to the original image to determine a
difference between the low-pass filtered image and the origi-
nal image. For each pixel of the original image, if the differ-
ence between the low-pass filtered image and the original
image is above a threshold value that suppresses the low
amplitude noise, then the difference is enhanced and com-
bined with the low-pass filtered image to enhance the high
frequency information in the image.

Conventional unsharp masking techniques apply the same
filter kernel to the entire image. In many-cases, the noise
varies spatially across the image such that the difference
associated with the noisy pixels is above the threshold value
implemented in the filter. In such cases, the noise may be
enhanced thereby reducing the quality of the processed
image. Thus, there is a need for addressing this issue and/or
other issues associated with the prior art.

SUMMARY

A system, method, and computer program product for
applying a spatially varying unsharp mask noise reduction
filter is disclosed. The spatially varying unsharp mask noise
reduction filter generates a low-pass filtered image by apply-
ing a low-pass filter to a digital image, generates a high-pass
filtered image of the digital image, and generates an unsharp
masked image based on the low-pass filtered image and the
high-pass filtered image. The filter also blends the low-pass
filtered image with the unsharp masked image based on a
shaping function.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for applying a
spatially varying unsharp mask noise reduction filter to an
image, in accordance with one embodiment;

FIG. 2A illustrates a conceptual block diagram of a spa-
tially varying unsharp mask noise reduction filter, in accor-
dance with one embodiment;

FIG. 2B illustrates the linear interpolation engine of FIG.
2A, in accordance with one embodiment;

FIG. 3 illustrates a parallel processing unit, according to
one embodiment;

FIG. 4 illustrates the streaming multi-processor of FIG. 3,
according to one embodiment; and

FIG. 5 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

A spatially varying unsharp mask noise reduction filter is
used to reduce noise in low frequency portions of the image

10

15

20

25

30

35

40

45

50

55

60

65

2

while enhancing high-frequency information such as by
increasing the acutance at the edges in the image. Conven-
tional techniques for applying an unsharp mask blend the
low-pass filtered version of the image with a scaled high-pass
filtered version of the image. However, such techniques may
enhance the amount of noise in the sharpened image.

Other implementations of the unsharp mask implement a
coring technique, which compares the high-frequency com-
ponents to a threshold value before combining the low-pass
and scaled high-pass versions of the image. In other words,
the high-pass filtered version of the image is combined with
the low-pass filtered version of the image only ifthe high-pass
signal is above a threshold value. However, these implemen-
tations either remove too much of the high pass signal, which
removes too much edge information, or, conversely, leave too
much noise in the image.

The spatially varying unsharp mask noise reduction filter,
described more fully below, reduces the artifacts caused by
this type of coring function. The sharpened image generated
by conventional unsharp masking techniques is blended with
the low-pass filtered image based on a shaping function of the
high-pass signal. Various embodiments of the spatially vary-
ing unsharp mask noise reduction filter may be implemented
in hardware, software, or combinations thereof. For example,
in one embodiment, the spatially varying unsharp mask noise
reduction filter may be implemented in an application specific
integrated circuit (ASIC). In another embodiment, the spa-
tially varying unsharp mask noise reduction filter may be
implemented in software executed on a central processing
unit (CPU). In yet other embodiments, at least a portion of the
spatially varying unsharp mask noise reduction filter may be
implemented in specialized software configured for execu-
tion in a highly parallel processor such as a graphics process-
ing unit (GPU).

FIG. 1 illustrates a flowchart of a method 100 for applying
a spatially varying unsharp mask noise reduction filter to an
image, in accordance with one embodiment. At step 102, a
low-pass filter is applied to a digital image to generate a
low-pass filtered image. In one embodiment, the spatially
varying unsharp mask noise reduction filter implements a
Gaussian filter that generates a filtered value for each pixel of
the image by applying a convolution kernel to a window of
neighboring pixels proximate to the pixel. At step 104, a
high-pass filtered image of the digital image is generated. In
one embodiment, the high-pass filtered image is generated by
subtracting the low-pass filtered image from the digital
image. The difference between the low-pass filtered image
and the digital image comprises the high frequency compo-
nents of the digital image. In another embodiment, the high-
pass filtered image may be generated using a high-pass filter
such as a sharpening filter based on a convolution kernel with
negative weight values.

At step 106, an unsharp masked (USM) image is generated
based on the low-pass filtered image and the high-pass filtered
image. In one embodiment, the high-pass filtered image is
scaled and then added to the low-pass filtered image to gen-
erate the USM image. In another embodiment, the scaled
high-pass filtered image is only combined with the low-pass
filtered image, at a particular pixel, if the difference between
the pixel in the low-pass filtered image and the pixel in the
digital image is above a threshold value. At step 108, the
low-pass filtered image and the USM image are blended
based on a shaping function to produce a sharpened version of
the digital image. In one embodiment, the spatially varying
unsharp mask noise reduction filter blends the low-pass fil-
tered image and the USM image via a linear interpolation
technique using a shaping function of the high-pass filtered

US 9,082,180 B2

3

image. It should be noted that, while various optional features
are set forth herein in connection with the spatially varying
unsharp mask noise reduction filter, such features are set forth
for illustrative purposes only and should not be construed as
limiting in any manner.

FIG. 2A illustrates a conceptual block diagram of a spa-
tially varying unsharp mask noise reduction filter 200, in
accordance with one embodiment. As shown in FIG. 2A, the
filter 200 includes a low-pass filter 210, a high-pass filter 220,
an unsharp mask (USM) engine 230, and a linear interpola-
tion (LERP) engine 240. Again, each of the elements of the
filter 200 may be implemented in hardware, software, or
combinations thereof. In one embodiment, the low-pass filter
210 implements a Gaussian low-pass filter by applying a
convolution kernel to each pixel in the input image 201. In
other words, for each pixel of the input image 201, the low-
pass filter 210 applies a convolution kernel to a plurality of
neighboring pixels in proximity to the pixel. The convolution
kernel may be applied to filter window having a size such as
a 3x3 block of pixels, a 5x5 block of pixels, a 7x7 block of
pixels, etc. The convolution kernel computes a weighted aver-
age of the plurality of neighboring pixels in the filter window
to generate a filtered value for the pixel. The weight applied to
each neighboring pixel in the filter window is determined
based on a Gaussian function, shown below as Equation 1,
which decreases based on the distance of the neighboring
pixel from the pixel.

“(24y2)

(Eq. 1)

As shown in Equation 1, X' is the x-coordinate of the pixel
at the center of the filter window (i.e., the pixel that is to be
replaced by the filtered value), y' is the y-coordinate of the
pixel at the center of the filter window, x is the x-coordinate of
the neighboring pixel, y is the y-coordinate of the neighboring
pixel, the constant o represents a standard deviation of a
Gaussian distribution, and the constant A is equal to the result
of the Gaussian function at (x, y) equal to (x', y"), which, in
one embodiment, A is equal to one. Applying the convolution
kernel to the input image 201 generates a blurred version of
the image, i.e., low-pass filtered image 204. In alternative
embodiments, the low-pass filter 210 may implement another
type of low-pass filter such as by implementing bilinear inter-
polation, bicubic interpolation, or simple averaging convolu-
tion kernels.

It will be appreciated that the low-pass filter 210 may be
implemented in hardware by designing an ASIC that receives
pixel values of the input image 201 and generates blurred
pixel values. The low-pass filter 210 may also be imple-
mented as a hardware engine as part of a more generalized
processor, such as by implementing a low-pass filter hard-
ware engine within a GPU. Alternatively, the low-pass filter
210 may be implemented in software executed on generalized
hardware such as a CPU. Efficiencies may be gained by
generating specialized software that implements the convo-
Iution kernel on a plurality of parallel processing units such as
within a GPU.

The filter 200 also includes a high-pass filter 220. In one
embodiment, the high-pass filter 220 generates the high-pass
filtered image by subtracting the low-pass filtered image 204
from the input image 201. In another embodiment, the high-
pass filter 220 implements a high-pass filter by applying a
convolution kernel to the input image 201. Unlike the convo-
Iution kernel of the low-pass filter 210, the convolution kernel

10

15

20

25

30

35

40

45

50

55

60

65

4

of'the high-pass filter 220 includes negative weights for some
of'the neighboring pixels. The convolution kernel weights are
chosen to correspond with the convolution kernel of the low-
pass filter 210 such that adding the low-pass filtered image
204 to the high-pass filtered image 205 generates a result that
approximates the input image 201.

Once the filter 200 has generated the low-pass filtered
image 204 and the high-pass filtered image 205, the USM
engine 230 scales the high-pass filtered image 205 and com-
bines the scaled high-pass filtered image with the low-pass
filtered image 204 to generate a sharpened version of the input
image 201, i.e., a classic USM image 207. In one embodi-
ment, the USM engine 230 multiplies each pixel in the high-
pass filtered image 205 by a scalar value, s, to generate an
intermediate pixel value and adds the intermediate value to a
corresponding pixel value in the low-pass filtered image 204.
The calculation implemented by the USM engine 230 is illus-
trated by Equation 2, shown below.

(Eq. 2)

As shown in Equation 2, P, , represents the low-pass fil-
tered image 204, P, represents the high-pass filtered image
205, and P' represents the USM image 207. In some embodi-
ments, the USM engine 230 may implement a coring func-
tion, ¢(x), which combines the component of the pixel value
from the high-pass filtered image 205 only if the high-pass
signal is above a threshold value, T, as illustrated in Equations
3 and 4 below.

Pxy)=Prp(xy)+sPup(x.y)

Peored %, ¥) = Prp(x, y) +5-c(Pyp(x, ¥)) - Pup(x, y) (Eq. 3)
0, xl<t (Eq. 4)
c(x) =
{ 1, xl=7

The LERP engine 240 receives the USM image 207 and the
low-pass filtered image 204 and generates the sharpened
image 202. The LERP engine 240 blends the USM image 207
with the low-pass filtered image 204 based on a shaping
function, a(x). In one embodiment, the blending function is a
linear interpolation function based on a shaping function,
(P, ¥)5), that takes the high-pass filtered image 205 as
an input. Each pixel value of the high-pass filtered image is
raised to the inverse power of a noise amplitude cutoff param-
eter. The blending function is illustrated below in conjunction
with Equations 5 and 6.

Py (x,y)=lerp(P(x,),Pp(%,y),0Prp(x)"5) (Eq. 5)

lerp(a,b,0)=(1-a)-0+0rb (Eq. 6)

As shown in Equation 5, PJ(x,y) represents the sharpened
image 202 and constant k represents a noise amplitude cutoff
parameter. The noise amplitude cutoff parameter is used to
control the noise amplitude cutoff separately from the thresh-
old value, T, used in the USM engine 230. The shaping func-
tion may be any function with a range between zero and one
(i.e., €[0 . .. 1]). In one embodiment, the shaping function
a(x) is equal to the Gaussian function G(x) illustrated by
Equation 7.

In the context of the present description, the amplitude of
the high pass signal for a particular pixel of the input, image
201 is defined as the magnitude of the difference between a
pixel of the low-pass filtered image 204 and a corresponding
pixel of the input image 201. As the amplitude of the high-
pass signal increases, more of the classic USM image 207 is
blended into the sharpened image 202. Conversely, as the
amplitude of the high-pass signal decreases, more of the

US 9,082,180 B2

5

low-pass filtered image 204 is blended into the sharpened
image 202. In other words, the spatially varying unsharp
mask noise reduction filter 200 extends the conventional
unsharp masking techniques by performing an additional step
that blends the low-pass filtered image 204 with the USM
image 207.

FIG. 2B illustrates the LERP engine 240 of FIG. 2A, in
accordance with one embodiment. The LERP engine 240
performs the additional blending step described above. As
shown in FI1G. 2B, the LERP engine 240 receives the low-pass
filtered image 204 and the high-pass filtered image 205 as
well as the USM image 207. The high-pass filtered image 205
is used to determine an interpolation value 242, a, that deter-
mines how the low-pass filtered image 204 and the USM
image 207 are blended. In one embodiment, the LERP engine
240 uses a look-up table (LUT) to select the interpolation
value 242. For each pixel of the high-pass filtered image 205,
a pixel value is used as an index into the LUT to select the
interpolation value 242. In another embodiment, the pixel
value is used as a variable in a computation computed
dynamically in order to calculate the interpolation value 242.

The LERP engine 240 multiplies the low-pass filtered
image 204 by the interpolation value 242 to generate a first
intermediate product and multiplies the USM image 207 by
one minus the interpolation value 242 to generate a second
intermediate product. The LERP engine 240 then sums the
first intermediate product with the second intermediate prod-
uct to generate the sharpened image 202. The LERP engine
240 illustrated in FIG. 2B implements the calculation shown
in Equation 6, set forth above.

It will be appreciated that the computations described
above in conjunction with FIGS. 2A and 2B are performed for
each pixel of the corresponding images. For example, the
calculations described by Equation 6 and illustrated in FIG.
2B are performed for each pixel ofthe low-pass filtered image
204 in conjunction with corresponding pixels of the high-pass
filtered image 205 and the USM image 207. In one embodi-
ment, the operations described herein may be performed fora
plurality of pixels of the images in parallel. For example, a
plurality of threads may be configured to perform the calcu-
lations for a corresponding plurality of pixels in parallel on a
graphics processing unit (CPU).

In addition, the computations described above may be
applied to each channel of an image separately. For example,
the input image 201 may be formatted such that each pixel
includes ared channel, a blue channel, and a green channel. In
such cases, the spatially varying unsharp mask noise reduc-
tion filter 200 may be applied to each channel of the image
separately and then the results may be combined. In another
example, the input image 201 may be formatted in a YUV
format. In such cases, the spatially varying unsharp mask
noise reduction filter 200 may be applied to the luminance
channel (i.e., the Y channel) while the chrominance channels
are not filtered.

Again, the spatially varying unsharp mask noise reduction
filter 200 described above may be implemented in hardware,
software, or combinations thereof. More illustrative informa-
tion will now be set forth regarding various optional architec-
tures and features with which the foregoing framework may
or may not be implemented, per the desires of the user. It
should be strongly noted that the following information is set
forth for illustrative purposes and should not be construed as
limiting in any manner. Any of the following features may be
optionally incorporated with or without the exclusion of other
features described.

FIG. 3 illustrates a parallel processing unit (PPU) 300,
according to one embodiment. While a parallel processor is

10

15

20

25

30

35

40

45

50

55

60

65

6

provided herein as an example of the PPU 300, it should be
strongly noted that such processor is set forth for illustrative
purposes only, and any processor may be employed to supple-
ment and/or substitute for the same. In one embodiment, the
PPU 300 is configured to execute a plurality of threads con-
currently in two or more streaming multi-processors (SMs)
350. A thread (i.e., a thread of execution) is an instantiation of
a set of instructions executing within a particular SM 350.
Each SM 350, described below in more detail in conjunction
with FIG. 4, may include, but is not limited to, one or more
processing cores, one or more load/store units (LSUs), a
level-one (L.1) cache, shared memory, and the like.

In one embodiment, the PPU 300 includes an input/output
(I/O) unit 305 configured to transmit and receive communi-
cations (i.e., commands, data, etc.) from a central processing
unit (CPU) (not shown) over the system bus 302. The I/O unit
305 may implement a Peripheral Component Interconnect
Express (PCle) interface for communications over a PCle
bus. In alternative embodiments, the [/O unit 305 may imple-
ment other types of well-known bus interfaces.

The PPU 300 also includes a host interface unit 310 that
decodes the commands and transmits the commands to the
grid management unit 315 or other units of the PPU 300 (e.g.,
memory interface 380) as the commands may specify. The
host interface unit 310 is configured to route communications
between and among the various logical units of the PPU 300.

In one embodiment, a program encoded as a command
stream is written to a bufter by the CPU. The buffer is a region
in memory, e.g., memory 304 or system memory, that is
accessible (i.e., read/write) by both the CPU and the PPU 300.
The CPU writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 300. The host interface unit 310 provides the grid man-
agement unit (GMU) 315 with pointers to one or more
streams. The GMU 315 selects one or more streams and is
configured to organize the selected streams as a pool of pend-
ing grids. The pool of pending grids may include new grids
that have not yet been selected for execution and grids that
have been partially executed and have been suspended.

A work distribution unit 320 that is coupled between the
GMU 315 and the SMs 350 manages a pool of active grids,
selecting and dispatching active grids for execution by the
SMs 350. Pending grids are transferred to the active grid pool
by the GMU 315 when a pending grid is eligible to execute,
i.e. has no unresolved data dependencies. An active grid is
transferred to the pending pool when execution of the active
grid is blocked by a dependency. When execution of a grid is
completed, the grid is removed from the active grid pool by
the work distribution unit 320. In addition to receiving grids
from the host interface unit 310 and the work distribution unit
320, the GMU 310 also receives grids that are dynamically
generated by the SMs 350 during execution of a grid. These
dynamically generated grids join the other pending grids in
the pending grid pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 300. An appli-
cation may include instructions (i.e., API calls) that cause the
driver kernel to generate one or more grids for execution. In
one embodiment, the PPU 300 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
block (i.e., warp) in a grid is concurrently executed on a
different data set by different threads in the thread block. The
driver kernel defines thread blocks that are comprised of k
related threads, such that threads in the same thread block
may exchange data through shared memory. In one embodi-

US 9,082,180 B2

7

ment, a thread block comprises 32 related threads and a grid
is an array of one or more thread blocks that execute the same
stream and the different thread blocks may exchange data
through global memory.

In one embodiment, the PPU 300 comprises X SMs 350
(X). For example, the PPU 300 may include 15 distinct SMs
350. Each SM 350 is multi-threaded and configured to
execute a plurality of threads (e.g., 32 threads) from a par-
ticular thread block concurrently. Each of the SMs 350 is
connected to a level-two (1.2) cache 365 via a crossbar 360 (or
other type of interconnect network). The [.2 cache 365 is
connected to one or more memory interfaces 380, Memory
interfaces 380 implement 16,32, 64, 128-bit data buses, or the
like, for high-speed data transfer. In one embodiment, the
PPU 300 comprises U memory interfaces 380(U), where each
memory interface 380(U) is connected to a corresponding
memory device 304(U). For example, PPU 300 may be con-
nected to up to 6 memory devices 304, such as graphics
double-data-rate, version 5, synchronous dynamic random
access memory (GDDRS SDRAM).

In one embodiment, the PPU 300 implements a multi-level
memory hierarchy. The memory 304 is located off-chip in
SDRAM coupled to the PPU 300. Data from the memory 304
may be fetched and stored in the 1.2 cache 365, which is
located on-chip and is shared between the various SMs 350.
In one embodiment, each of the SMs 350 also implements an
L1 cache. The L1 cache is private memory that is dedicated to
a particular SM 350. Each of the L1 caches is coupled to the
shared L2 cache 365. Data from the L2 cache 365 may be
fetched and stored in each of the L1 caches for processing in
the functional units of the SMs 350.

In one embodiment, the PPU 300 comprises a graphics
processing unit (GPU). The PPU 300 is configured to receive
commands that specify shader programs for processing
graphics data. Graphics data may be defined as a set of primi-
tives such as points, lines, triangles, quads, triangle strips, and
the like. Typically, a primitive includes data that specifies a
number of vertices for the primitive (e.g., in a model-space
coordinate system) as well as attributes associated with each
vertex of the primitive. The PPU 300 can be configured to
process the graphics primitives to generate a frame buffer
(i.e., pixel data for each of the pixels of the display). The
driver kernel implements a graphics processing pipeline, such
as the graphics processing pipeline defined by the OpenGL
APL

An application writes model data for a scene (i.e., a col-
lection of vertices and attributes) to memory. The model data
defines each of the objects that may be visible on a display.
The application then makes an API call to the driver kernel
that requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the buffer to perform one or more operations to process the
model data. The commands may encode different shader
programs including one or more of a vertex shader, hull
shader, geometry shader, pixel shader, etc. For example, the
GMU 315 may configure one or more SMs 350 to execute a
vertex shader program that processes a number of vertices
defined by the model data. In one embodiment, the GMU 315
may configure different SMs 350 to execute different shader
programs concurrently. For example, a first subset of SMs
350 may be configured to execute a vertex shader program
while a second subset of SMs 350 may be configured to
execute a pixel shader program. The first subset of SMs 350
processes vertex data to produce processed vertex data and
writes the processed vertex data to the .2 cache 365 and or the
memory 304. After the processed vertex data is rasterized
(i.e., transformed from three-dimensional data into two-di-

10

20

25

30

35

40

45

50

55

60

65

8

mensional data in screen space) to produce fragment data, the
second subset of SMs 350 executes a pixel shader to produce
processed fragment data, which is then blended with other
processed fragment data and written to the frame buffer in
memory 304. The vertex shader program and pixel shader
program may execute concurrently, processing different data
from the same scene in a pipelined fashion until all of the
model data for the scene has been rendered to the frame
buffer. Then, the contents of the frame buffer are transmitted
to a display controller for display on a display device.

The PPU 300 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g. a
wireless, hand-held device), personal digital assistant (PDA),
a digital camera, a hand-held electronic device, and the like.
In one embodiment, the PPU 300 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
300 is included in a system-on-a-chip (SoC) along with one or
more other logic units such as a reduced instruction set com-
puter (RISC) CPU, a memory management unit (MMU), a
digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 300 may be included on a
graphics card that includes one or more memory devices 304
such as GDDRS SDRAM. The graphics card may be config-
ured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 300 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 4 illustrates the streaming multi-processor 350 of
FIG. 3, according to one embodiment. As shown in FIG. 4, the
SM 350 includes an instruction cache 405, one or more sched-
uler units 410, a register file 420, one or more processing
cores 450, one or more double precision units (DPUs) 451,
one or more special function units (SFUs) 452, one or more
load/store units (LSUs) 453, an interconnect network 480, a
shared memory/L.1 cache 470, and one or more texture units
490.

As described above, the work distribution unit 320 dis-
patches active grids for execution on one or more SMs 350 of
the PPU 300. The scheduler unit 410 receives the grids from
the work distribution unit 320 and manages instruction sched-
uling for one or more thread blocks of each active grid. The
scheduler unit 410 schedules threads for execution in groups
of parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 410 may manage a plurality of different thread blocks,
allocating the thread blocks to warps for execution and then
scheduling instructions from the plurality of different warps
on the various functional units i.e., cores 450, DPUs 451,
SFUs 452, and L.SUs 453) during each clock cycle.

In one embodiment, each scheduler unit 410 includes one
ormore instruction dispatchunits 415. Each dispatch unit 415
is configured to transmit instructions to one or more of the
functional units. In the embodiment shown in FIG. 4, the
scheduler unit 410 includes two dispatch units 415 that enable
two different instructions from the same warp to be dis-
patched during each clock cycle. In alternative embodiments,
each scheduler unit 410 may include a single dispatch unit
415 or additional dispatch units 415.

Each SM 350 includes a register file 420 that provides a set
of registers for the functional units of the SM 350. In one
embodiment, the register file 420 is divided between each of
the functional units such that each functional unit is allocated
a dedicated portion of the register file 420. In another embodi-
ment, the register file 420 is divided between the different
warps being executed by the SM 350. The register file 420

US 9,082,180 B2

9

provides temporary storage for operands connected to the
data paths of the functional units.

Each SM 350 comprises [processing cores 450. In one
embodiment, the SM 350 includes a large number (e.g., 192,
etc.) of distinct processing cores 450. Each core 450 is a
fully-pipelined, single-precision processing unit that includes
afloating point arithmetic logic unit and an integer arithmetic
logic unit. In one embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for float-
ing point arithmetic. Each SM 350 also comprises M DPUs
451 that implement double-precision floating point arith-
metic, N SFUs 452 that perform special functions (e.g., copy
rectangle, pixel blending operations, and the like), and P
LSUs 453 that implement load and store operations between
the shared memory/L1 cache 470 and the register file 420. In
one embodiment, the SM 350 includes 64 DPUs 451, 32
SFUs 452, and 32 LSUs 453.

Each SM 350 includes an interconnect network 480 that
connects each of the functional units to the register file 420
and the shared memory/L.1 cache 470. In one embodiment,
the interconnect network 480 is a crossbar that can be con-
figured to connect any of the functional units to any of the
registers in the register file 420 or the memory locations in
shared memory/L.1 cache 470.

In one embodiment, the SM 350 is implemented within a
GPU. In such an embodiment, the SM 350 comprises J texture
units 490. The texture units 490 are configured to load texture
maps (i.e., a 2D array of texels) from the memory 304 and
sample the texture maps to produce sampled texture values
for use in shader programs. The texture units 490 implement
texture operations such as anti-aliasing operations using mip-
maps (i.e., texture maps of varying levels of detail). In one
embodiment, the SM 350 includes 16 texture units 490.

The PPU 300 described above may be configured to per-
form highly parallel computations much faster than conven-
tional CPUs. Parallel computing has advantages in graphics
processing, data compression, biometrics, stream processing
algorithms, and the like.

FIG. 5 illustrates an exemplary system 500 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 500 is provided including at least one central processor
501 that is connected to a communication bus 502. The com-
munication bus 502 may be implemented using any suitable
protocol, such as PCI (Peripheral Component Interconnect),
PCI-Express, AGP (Accelerated Graphics Port), HyperTrans-
port, or any other bus or point-to-point communication pro-
tocol(s). The system 500 also includes a main memory 504.
Control logic (software) and data are stored in the main
memory 504 which may take the form of random access
memory (RAM).

The system 500 also includes input devices 512, a graphics
processor 506, and a display 508, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may be
received from the input devices 512, e.g., keyboard, mouse,
touchpad, microphone, and the like. In one embodiment, the
graphics processor 506 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU).

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional

10

15

20

25

30

35

40

45

50

55

60

10

central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.

The system 500 may also include a secondary storage 510.
The secondary storage 510 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
disk drive, a magnetic tape drive, a compact disk drive, digital
versatile disk (DVD) drive, recording device, universal serial
bus (USB) flash memory. The removable storage drive reads
from and/or writes to a removable storage unit in a well-
known manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 504 and/or the secondary
storage 510. Such computer programs, when executed,
enable the system 500 to perform various functions. The
memory 504, the storage 510, and/or any other storage are
possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 501, the graphics processor
506, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central processor
501 and the graphics processor 506, a chipset (i.e., a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte-
grated circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 500 may take the form of a desktop
computer, laptop computer, server, workstation, game con-
soles, embedded system, and/or any other type of logic. Still
yet, the system 500 may take the form of various other devices
including, but not limited to a personal digital assistant (PDA)
device, a mobile phone device, a television, etc.

Further, while not shown, the system 500 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network, or
the like) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A method comprising:

generating a low-pass filtered image by applying a low-
pass filter to a digital image;

generating a high-pass filtered image of the digital image;

generating an unsharp masked image based on the low-
pass filtered image and the high-pass filtered image; and

blending the low-pass filtered image with the unsharp
masked image based on a shaping function,

wherein blending the low-pass filtered image with the
unsharp masked image comprises performing a linear
interpolation between the low-pass filtered image and
the unsharp masked image based on the shaping func-
tion,

wherein an input to the shaping function comprises a func-
tion of a pixel value of the high-pass filtered image, and

US 9,082,180 B2

11

wherein the input to the shaping function is based on a

noise amplitude cutoft parameter.

2. The method of claim 1, wherein generating the high-pass
filtered image comprises calculating the difference between
the digital image and the low-pass filtered image.

3. The method of claim 1, wherein generating the unsharp
masked image comprises combining the low-pass filtered
image and a scaled version of the high-pass filtered image.

4. The method of claim 3, wherein generating the unsharp
masked image comprises scaling the high-pass filtered image
based on a coring function.

5. The method of claim 1, wherein the low-pass filtered
image is generated by applying a convolution kernel to each
pixel of the digital image.

6. The method of claim 5, wherein the convolution kernel is
implemented in software configured to be executed on a
graphics processing unit.

7. The method of claim 1, wherein a value returned by the
shaping function is generated using a look-up table (LUT).

8. The method of claim 7, wherein an index into the LUT
comprises a function of a pixel value of the high-pass filtered
image.

9. The method of claim 7, wherein the LUT table represents
a Gaussian function.

10. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor, cause
the processor to perform steps comprising:

generating a low-pass filtered image by applying a low-

pass filter to a digital image;

generating a high-pass filtered image of the digital image;

generating an unsharp masked image based on the low-

pass filtered image and the high-pass filtered image; and
blending the low-pass filtered image with the unsharp
masked image based on a shaping function,

wherein blending the low-pass filtered image with the

unsharp masked image comprises performing a linear
interpolation between the low-pass filtered image and
the unsharp masked image based on the shaping func-
tion,

wherein an input to the shaping function comprises a func-

tion of a pixel value of the high-pass filtered image, and

wherein the input to the shaping function is based on a

noise amplitude cutoft parameter.

10

15

20

25

30

35

40

12

11. The non-transitory computer-readable storage medium
of claim 10, wherein blending the low-pass filtered image
with the unsharp masked image comprises performing a lin-
ear interpolation between the low-pass filtered image and the
unsharp masked image based on the shaping function.

12. The non-transitory computer-readable storage medium
of claim 11, wherein an input to the shaping function com-
prises a function of a pixel value of the high-pass filtered
image.

13. The non-transitory computer-readable storage medium
of'claim 10, wherein a value returned by the shaping function
is generated using a look-up table (LUT).

14. A system, comprising:

a memory storing a digital image; and

a processing unit configured to:

generate a low-pass filtered image by applying a low-
pass filter to a digital image,

generate a high-pass filtered image of the digital image,

generate an unsharp masked image based on the low-
pass filtered image and the high-pass filtered image,
and

blend the low-pass filtered image with the unsharp
masked image based on a shaping function,

wherein blending the low-pass filtered image with the

unsharp masked image comprises performing a linear
interpolation between the low-pass filtered image and
the unsharp masked image based on the shaping func-
tion,

wherein an input to the shaping function comprises a func-

tion of a pixel value of the high-pass filtered image, and

wherein the input to the shaping function is based on a

noise amplitude cutoft parameter.

15. The system of claim 14, wherein blending the low-pass
filtered image with the unsharp masked image comprises
performing a linear interpolation between the low-pass fil-
tered image and the unsharp masked image based on the
shaping function.

16. The system of claim 14, wherein the processing unit is
a graphics processing unit.

17. The system of claim 16, wherein the processing unit is
included in a system-on-chip (SoC) that further comprises a
central processing unit.

#* #* #* #* #*

